Format

Send to

Choose Destination
See comment in PubMed Commons below
J Muscle Res Cell Motil. 2012 Dec;33(6):385-94. doi: 10.1007/s10974-012-9316-7. Epub 2012 Aug 29.

Temperature dependent measurements reveal similarities between muscle and non-muscle myosin motility.

Author information

1
Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA. cmy11@psu.edu

Abstract

We examined the temperature dependence of muscle and non-muscle myosin (heavy meromyosin, HMM) with in vitro motility and actin-activated ATPase assays. Our results indicate that myosin V (MV) has a temperature dependence that is similar in both ATPase and motility assays. We demonstrate that skeletal muscle myosin (SK), smooth muscle myosin (SM), and non-muscle myosin IIA (NM) have different temperature dependence in ATPase compared to in vitro motility assays. In the class II myosins we examined (SK, SM, and NM) the rate-limiting step in ATPase assays is thought to be attachment to actin or phosphate release, while for in vitro motility assays it is controversial. In MV the rate-limiting step for both in vitro motility and ATPase assays is known to be ADP release. Consequently, in MV the temperature dependence of the ADP release rate constant is similar to the temperature dependence of in vitro motility. Interestingly, the temperature dependence of the ADP release rate constant of SM and NM was shifted toward the in vitro motility temperature dependence. Our results suggest that the rate-limiting step in SK, SM, and NM may shift from attachment-limited in solution to detachment limited in the in vitro motility assay. Internal strain within the myosin molecule or by neighboring myosin motors may slow ADP release which becomes rate-limiting in the in vitro motility assay. Within this small subset of myosins examined, the in vitro sliding velocity correlates reasonably well with actin-activated ATPase activity, which was suggested by the original study by Barany (J Gen Physiol 50:197-218, 1967).

PMID:
22930330
PMCID:
PMC3666341
DOI:
10.1007/s10974-012-9316-7
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center