Send to

Choose Destination
J Cereb Blood Flow Metab. 2013 Jan;33(1):59-66. doi: 10.1038/jcbfm.2012.120. Epub 2012 Aug 29.

In-vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F]FDOPA PET.

Author information

Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.


Longitudinal measurements of dopamine (DA) uptake and turnover in transgenic rodents may be critical when developing disease-modifying therapies for Parkinson's disease (PD). We demonstrate methodology for such measurements using [(18)F]fluoro-3,4-dihydroxyphenyl-L-alanine ([(18)F]FDOPA) positron emission tomography (PET). The method was applied to 6-hydroxydopamine lesioned rats, providing the first PET-derived estimates of DA turnover for this species. Control (n=4) and unilaterally lesioned (n=11) rats were imaged multiple times. Kinetic modeling was performed using extended Patlak, incorporating a k(loss) term for metabolite washout, and modified Logan methods. Dopaminergic terminal loss was measured via [(11)C]-(+)-dihydrotetrabenazine (DTBZ) PET. Clear striatal [(18)F]FDOPA uptake was observed. In the lesioned striatum the effective DA turnover increased, shown by a reduced effective distribution volume ratio (EDVR) for [(18)F]FDOPA. Effective distribution volume ratio correlated (r>0.9) with the [(11)C]DTBZ binding potential (BP(ND)). The uptake and trapping rate (k(ref)) decreased after lesioning, but relatively less so than [(11)C]DTBZ BP(ND). For normal controls, striatal estimates were k(ref)=0.037±0.005 per minute, EDVR=1.07±0.22 and k(loss)=0.024±0.003 per minute (30 minutes turnover half-time), with repeatability (coefficient of variation) ≤11%. [(18)F]fluoro-3,4-dihydroxyphenyl-L-alanine PET enables measurements of DA turnover in the rat, which is useful for developing novel therapies for PD.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center