Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Hum Genet. 2013 May;21(5):517-21. doi: 10.1038/ejhg.2012.197. Epub 2012 Aug 29.

A rare variant in the osteoarthritis-associated locus GDF5 is functional and reveals a site that can be manipulated to modulate GDF5 expression.

Author information

1
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.

Abstract

Osteoarthritis (OA) is a polygenic disease characterized by cartilage loss, with the single-nucleotide polymorphism (SNP) rs143383 (C/T) influencing OA susceptibility across a range of ethnic groups. The SNP resides within the 5'-UTR of the growth and differentiation factor 5 gene (GDF5), with the OA-associated T-allele mediating reduced GDF5 expression. As GDF5 codes for a cartilage anabolic protein, this reduced expression may explain why the T-allele of rs143383 is an OA risk factor. Our deep sequencing of GDF5 identified a C/A transversion located -41 bp relative to the gene's transcription start site. This promoter variant is predicted to affect transcription factor binding and it may therefore highlight a regulatory site that could be exploited to manipulate GDF5 expression and alleviate the detrimental effect mediated by the T-allele of rs143383. Here, we describe our functional assessment of the -41 bp variant. Using reporter constructs we demonstrated that the transversion leads to increased gene expression to such a degree that the A-allele is able to compensate for the reduced expression mediated by the T-allele of rs143383. Using electrophoretic mobility shift assays we identified YY1 as a trans-acting factor that differentially binds to the alleles of the -41 bp variant, with more avid binding to allele A. Knockdown of YY1 led to a significant reduction in GDF5 expression, supporting YY1 as a GDF5 activator. In conclusion, we demonstrated that the -41 bp variant is functional and we have identified a regulatory region of GDF5 that can be exploited to overcome the OA genetic deficit mediated by the T-allele of rs143383.

PMID:
22929025
PMCID:
PMC3641375
DOI:
10.1038/ejhg.2012.197
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center