Format

Send to

Choose Destination
Bioessays. 2012 Oct;34(10):893-900. doi: 10.1002/bies.201200069. Epub 2012 Aug 24.

Whole chromosome aneuploidy: big mutations drive adaptation by phenotypic leap.

Author information

1
Stowers Institute for Medical Research, Kansas City, MO, USA. gch@stowers.org

Abstract

Despite its widespread existence, the adaptive role of aneuploidy (the abnormal state of having an unequal number of different chromosomes) has been a subject of debate. Cellular aneuploidy has been associated with enhanced resistance to stress, whereas on the organismal level it is detrimental to multicellular species. Certain aneuploid karyotypes are deleterious for specific environments, but karyotype diversity in a population potentiates adaptive evolution. To reconcile these paradoxical observations, this review distinguishes the role of aneuploidy in cellular versus organismal evolution. Further, it proposes a population genetics perspective to examine the behavior of aneuploidy on a populational versus individual level. By altering the copy number of a significant portion of the genome, aneuploidy introduces large phenotypic leaps that enable small cell populations to explore a wide phenotypic landscape, from which adaptive traits can be selected. The production of chromosome number variation can be further increased by stress- or mutation-induced chromosomal instability, fueling rapid cellular adaptation.

PMID:
22926916
PMCID:
PMC3526072
DOI:
10.1002/bies.201200069
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center