Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Toxicol Methods. 2012 Nov-Dec;66(3):246-56. doi: 10.1016/j.vascn.2012.08.167. Epub 2012 Aug 25.

High throughput measurement of Ca²⁺ dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry.

Author information

1
Sanford-Burnham Medical Research Institute, 10901N. Torrey Pines Road, La Jolla, CA 92037, USA.

Abstract

Current methods to measure physiological properties of cardiomyocytes and predict fatal arrhythmias that can cause sudden death, such as Torsade de Pointes, lack either the automation and throughput needed for early-stage drug discovery and/or have poor predictive value. To increase throughput and predictive power of in vitro assays, we developed kinetic imaging cytometry (KIC) for automated cell-by-cell analyses via intracellular fluorescence Ca²⁺ indicators. The KIC instrument simultaneously records and analyzes intracellular calcium concentration [Ca²⁺](i) at 30-ms resolution from hundreds of individual cells/well of 96-well plates in seconds, providing kinetic details not previously possible with well averaging technologies such as plate readers. Analyses of human embryonic stem cell and induced pluripotent stem cell-derived cardiomyocytes revealed effects of known cardiotoxic and arrhythmogenic drugs on kinetic parameters of Ca²⁺ dynamics, suggesting that KIC will aid in the assessment of cardiotoxic risk and in the elucidation of pathogenic mechanisms of heart disease associated with drugs treatment and/or genetic background.

PMID:
22926323
PMCID:
PMC3667588
DOI:
10.1016/j.vascn.2012.08.167
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center