Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biomol Screen. 2012 Oct;17(9):1252-63. Epub 2012 Aug 24.

A high-throughput screen for Wnt/β-catenin signaling pathway modulators in human iPSC-derived neural progenitors.

Author information

1
Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.

Abstract

Wnt/β-catenin signaling has emerged as a central player in pathways implicated in the pathophysiology and treatment of neuropsychiatric disorders. To identify potential novel therapeutics for these disorders, high-throughput screening (HTS) assays reporting on Wnt/β-catenin signaling in disease-relevant contexts are needed. The use of human patient-derived induced pluripotent stem cell (iPSC) models provides ideal disease-relevant context if these stem cell cultures can be adapted for HTS-compatible formats. Here, we describe a sensitive, HTS-compatible Wnt/β-catenin signaling reporter system generated in homogeneous, expandable neural progenitor cells (NPCs) derived from human iPSCs. We validated this system by demonstrating dose-responsive stimulation by several known Wnt/β-catenin signaling pathway modulators, including Wnt3a, a glycogen synthase kinase-3 (GSK3) inhibitor, and the bipolar disorder therapeutic lithium. These responses were robust and reproducible over time across many repeated assays. We then conducted a screen of ~1500 compounds from a library of Food and Drug Administration-approved drugs and known bioactives and confirmed the HTS hits, revealing multiple chemical and biological classes of novel small-molecule probes of Wnt/β-catenin signaling. Generating these type of pathway-selective, cell-based phenotypic assays in human iPSC-derived neural cells will advance the field of human experimental neurobiology toward the goal of identifying and validating targets for neuropsychiatric disorders.

PMID:
22923789
PMCID:
PMC3903585
DOI:
10.1177/1087057112456876
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for PubMed Central
    Loading ...
    Support Center