Format

Send to

Choose Destination
Pharmacol Res. 2012 Nov;66(5):437-42. doi: 10.1016/j.phrs.2012.08.002. Epub 2012 Aug 14.

The CB2-preferring agonist JWH015 also potently and efficaciously activates CB1 in autaptic hippocampal neurons.

Author information

1
Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.

Abstract

The G protein coupled receptors CB(1) and CB(2) are targets for the psychoactive constituents of cannabis, chief among them Δ(9)-THC. They are also key components of the multifunctional endogenous cannabinoid signaling system. CB(1) and CB(2) receptors modulate a wide variety of physiological systems including analgesia, memory, mood, reward, appetite and immunity. Identification and characterization of selective CB(1) and CB(2) receptor agonists and antagonists will facilitate understanding the precise physiological and pathophysiological roles of cannabinoid receptors in these systems. This is particularly necessary in the case of CB(2) because these receptors are sparsely expressed and problematic to detect using traditional immunocytochemical approaches. 1-Propyl-2-methyl-3-(1-naphthoyl)indole (JWH015) is an aminoalkylindole that has been employed as a "CB(2)-selective" agonist in more than 40 published papers. However, we have found that JWH015 potently and efficaciously activates CB(1) receptors in neurons. Using murine autaptic hippocampal neurons, which express CB(1), but not CB(2) receptors, we find that JWH015 inhibits excitatory postsynaptic currents with an EC50 of 216nM. JWH015 inhibition is absent in neurons from CB(1)(-/-) cultures and is reversed by the CB(1) antagonist, SR141716 [200nM]. Furthermore, JWH015 partially occludes CB(1)-mediated DSE (∼35% remaining), an action reversed by the CB(2) antagonist, AM630 [1 and 3μM], suggesting that high concentrations of AM630 also antagonize CB(1) receptors. We conclude that while JWH015 is a CB(2)-preferring agonist, it also activates CB(1) receptors at experimentally encountered concentrations. Thus, CB(1) agonism of JWH015 needs to be considered in the design and interpretation of experiments that use JWH015 to probe CB(2)-signaling.

PMID:
22921769
PMCID:
PMC3601544
DOI:
10.1016/j.phrs.2012.08.002
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center