Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2012 Oct;23(20):3957-69. doi: 10.1091/mbc.E12-05-0358. Epub 2012 Aug 23.

In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins.

Author information

Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, 79104 Freiburg, Germany.


The intermembrane space of mitochondria accommodates the essential mitochondrial intermembrane space assembly (MIA) machinery that catalyzes oxidative folding of proteins. The disulfide bond formation pathway is based on a relay of reactions involving disulfide transfer from the sulfhydryl oxidase Erv1 to Mia40 and from Mia40 to substrate proteins. However, the substrates of the MIA typically contain two disulfide bonds. It was unclear what the mechanisms are that ensure that proteins are released from Mia40 in a fully oxidized form. In this work, we dissect the stage of the oxidative folding relay, in which Mia40 binds to its substrate. We identify dynamics of the Mia40-substrate intermediate complex. Our experiments performed in a native environment, both in organello and in vivo, show that Erv1 directly participates in Mia40-substrate complex dynamics by forming a ternary complex. Thus Mia40 in cooperation with Erv1 promotes the formation of two disulfide bonds in the substrate protein, ensuring the efficiency of oxidative folding in the intermembrane space of mitochondria.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center