Format

Send to

Choose Destination
See comment in PubMed Commons below
Microcirculation. 2013 Jan;20(1):1-16. doi: 10.1111/micc.12001.

Sphingosine 1-phosphate (S1P) induces S1P2 receptor-dependent tonic contraction in murine iliac lymph vessels.

Author information

1
Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan.

Abstract

OBJECTIVE:

We studied the effects of S1P on the diameter and spontaneous contraction of murine iliac collecting lymph vessels.

METHODS:

The isolated lymph vessel was cannulated with two glass micropipettes and then pressurized to 4 cmH(2) O at the intraluminal pressure. The changes in lymph vessel diameter were measured using a custom-made diameter-detection device. Immunohistochemical studies were also performed to confirm S1P receptors on the lymph vessels.

RESULTS:

S1P (10(-7) M) had no significant effect on the frequency or amplitude of the lymph vessels' spontaneous contractions. In contrast, S1P (10(-8) -10(-6) M) produced a concentration-related reduction in lymph vessel diameter (tonic contraction). Pretreatment with 10(-4) M l-NAME or 10(-5) M aspirin had no significant effect on the S1P-induced tonic contraction of the lymph vessels. To evaluate the intracellular signal transduction pathway responsible for the S1P-induced tonic contractions and their Ca(2+) -dependence, we investigated the effects of JTE013, VPC23019, U-73122, xestospongin C, and nifedipine on the S1P-induced tonic contractions. All of these inhibitors except VPC23019 and nifedipine significantly reduced the S1P-induced tonic contractions. S1P (5x10(-7) M) also induced significant tonic contractions in the lymph vessels that had been superfused with high K(+) Krebs-bicarbonate solution or Ca(2+) -free high K(+) Krebs solution containing 1 mM EGTA. S1P2 receptors were immunohistochemically detected in the lymph vessels.

CONCLUSION:

These findings suggest that neither endogenous NO nor prostaglandins are involved in the S1P-induced tonic contraction of lymph vessels, which is mainly caused by Ca(2+) release from intracellular Ca(2+) stores through the activation of S1P2 and 1,4,5 IP(3) receptors.

PMID:
22913344
DOI:
10.1111/micc.12001
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center