Format

Send to

Choose Destination
See comment in PubMed Commons below
J Vis Exp. 2012 Aug 13;(66). pii: 4018. doi: 10.3791/4018.

A quantitative fitness analysis workflow.

Author information

1
Institute for Cell and Molecular Biosciences, Newcastle University Medical School.

Abstract

Quantitative Fitness Analysis (QFA) is an experimental and computational workflow for comparing fitnesses of microbial cultures grown in parallel(1,2,3,4). QFA can be applied to focused observations of single cultures but is most useful for genome-wide genetic interaction or drug screens investigating up to thousands of independent cultures. The central experimental method is the inoculation of independent, dilute liquid microbial cultures onto solid agar plates which are incubated and regularly photographed. Photographs from each time-point are analyzed, producing quantitative cell density estimates, which are used to construct growth curves, allowing quantitative fitness measures to be derived. Culture fitnesses can be compared to quantify and rank genetic interaction strengths or drug sensitivities. The effect on culture fitness of any treatments added into substrate agar (e.g. small molecules, antibiotics or nutrients) or applied to plates externally (e.g. UV irradiation, temperature) can be quantified by QFA. The QFA workflow produces growth rate estimates analogous to those obtained by spectrophotometric measurement of parallel liquid cultures in 96-well or 200-well plate readers. Importantly, QFA has significantly higher throughput compared with such methods. QFA cultures grow on a solid agar surface and are therefore well aerated during growth without the need for stirring or shaking. QFA throughput is not as high as that of some Synthetic Genetic Array (SGA) screening methods(5,6). However, since QFA cultures are heavily diluted before being inoculated onto agar, QFA can capture more complete growth curves, including exponential and saturation phases(3). For example, growth curve observations allow culture doubling times to be estimated directly with high precision, as discussed previously(1). Here we present a specific QFA protocol applied to thousands of S. cerevisiae cultures which are automatically handled by robots during inoculation, incubation and imaging. Any of these automated steps can be replaced by an equivalent, manual procedure, with an associated reduction in throughput, and we also present a lower throughput manual protocol. The same QFA software tools can be applied to images captured in either workflow. We have extensive experience applying QFA to cultures of the budding yeast S. cerevisiae but we expect that QFA will prove equally useful for examining cultures of the fission yeast S. pombe and bacterial cultures.

PMID:
22907268
PMCID:
PMC3567198
DOI:
10.3791/4018
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for MyJove Corporation Icon for PubMed Central
    Loading ...
    Support Center