Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(8):e42720. doi: 10.1371/journal.pone.0042720. Epub 2012 Aug 8.

Assessment of Cr(VI)-induced cytotoxicity and genotoxicity using high content analysis.

Author information

1
ToxStrategies, Katy, Texas, United States of America. cthompson@toxstrategies.com

Abstract

Oral exposure to high concentrations of hexavalent chromium [Cr(VI)] induces intestinal redox changes, villus cytotoxicity, crypt hyperplasia, and intestinal tumors in mice. To assess the effects of Cr(VI) in a cell model relevant to the intestine, undifferentiated (proliferating) and differentiated (confluent) Caco-2 cells were treated with Cr(VI), hydrogen peroxide or rotenone for 2-24 hours. DNA damage was then assessed by nuclear staining intensity of 8-hydroxydeoxyguanosine (8-OHdG) and phosphorylated histone variant H2AX (γ-H2AX) measured by high content analysis methods. In undifferentiated Caco-2, all three chemicals increased 8-OHdG and γ-H2AX staining at cytotoxic concentrations, whereas only 8-OHdG was elevated at non-cytotoxic concentrations at 24 hr. Differentiated Caco-2 were more resistant to cytotoxicity and DNA damage than undifferentiated cells, and there were no changes in apoptotic markers p53 or annexin-V. However, Cr(VI) induced a dose-dependent translocation of the unfolded protein response transcription factor ATF6 into the nucleus. Micronucleus (MN) formation was assessed in CHO-K1 and A549 cell lines. Cr(VI) increased MN frequency in CHO-K1 only at highly cytotoxic concentrations. Relative to the positive control Mitomycin-C, Cr(VI) only slightly increased MN frequency in A549 at mildly cytotoxic concentrations. The results demonstrate that Cr(VI) genotoxicity correlates with cytotoxic concentrations, and that H2AX phosphorylation occurs at higher concentrations than oxidative DNA damage in proliferating Caco-2 cells. The findings suggest that in vitro genotoxicity of Cr(VI) is primarily oxidative in nature at low concentrations. Implications for in vivo intestinal toxicity of Cr(VI) will be discussed.

PMID:
22905163
PMCID:
PMC3414448
DOI:
10.1371/journal.pone.0042720
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center