Send to

Choose Destination
Cancer Manag Res. 2012;4:233-41. doi: 10.2147/CMAR.S32449. Epub 2012 Aug 7.

Retinoids in the treatment of glioma: a new perspective.

Author information

Department of Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University, Jackson, MS, USA.


Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RARα-induced gliomas, while the RARβ agonist would suppress tumor growth and possibly contribute to the regeneration of normal glia.


epidemiology; glioma; hypervitaminosis A; pathogenesis; retinoids

Supplemental Content

Full text links

Icon for Dove Medical Press Icon for PubMed Central
Loading ...
Support Center