Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2012 Sep 15;189(6):2941-53. doi: 10.4049/jimmunol.1200935. Epub 2012 Aug 17.

Leptin-induced mTOR activation defines a specific molecular and transcriptional signature controlling CD4+ effector T cell responses.

Author information

Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Napoli 80131, Italy.


The sensing by T cells of metabolic and energetic changes in the microenvironment can determine the differentiation, maturation, and activation of these cells. Although it is known that mammalian target of rapamycin (mTOR) gauges nutritonal and energetic signals in the extracellular milieu, it is not known how mTOR and metabolism influence CD4+CD25-FOXP3- effector T cell (Teff) responses. In this article, we show that leptin-induced activation of mTOR, which, in turn, controls leptin production and signaling, causes a defined cellular, biochemical, and transcriptional signature that determine the outcome of Teff responses, both in vitro and in vivo. The blockade of leptin/leptin receptor signaling, induced by genetic means or by starvation, leads to impaired mTOR activity that inhibits the proliferation of Teffs in vivo. Notably, the transcriptional signature of Teffs in the presence of leptin blockade appears similar to that observed in rapamycin-treated Teffs. These results identify a novel link between nutritional status and Teff responses through the leptin-mTOR axis and define a potential target for Teff modulation in normal and pathologic conditions.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center