Format

Send to

Choose Destination
Theor Appl Genet. 2012 Dec;125(8):1797-808. doi: 10.1007/s00122-012-1954-z. Epub 2012 Aug 18.

QTL mapping of resistance to gray leaf spot in maize.

Author information

1
National Maize Improvement Center of China, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China. zhangyan4023@gmail.com

Abstract

Gray leaf spot (GLS), caused by the causal fungal pathogen Cercospora zeae-maydis, is one of the most serious foliar diseases of maize worldwide. In the current study, a highly resistant inbred line Y32 and a susceptible line Q11 were used to produce segregating populations for both genetic analysis and QTL mapping. The broad-sense heritability (H (2)) for GLS resistance was estimated to be as high as 0.85, indicating that genetic factors played key roles in phenotypic variation. In initial QTL analysis, four QTL, located on chromosomes 1, 2, 5, and 8, were detected to confer GLS resistance. Each QTL could explain 2.53-23.90 % of the total phenotypic variation, predominantly due to additive genetic effects. Two major QTL, qRgls1 and qRgls2 on chromosomes 8 and 5, were consistently detected across different locations and replicates. Compared to the previous results, qRgls2 is located in a 'hotspot' for GLS resistance; while, qRgls1 does not overlap with any other known resistance QTL. Furthermore, the major QTL-qRgls1 was fine-mapped into an interval of 1.4 Mb, flanked by the markers GZ204 and IDP5. The QTL-qRgls1 could enhance the resistance percentages by 19.70-61.28 %, suggesting its usefulness to improve maize resistance to GLS.

PMID:
22903692
DOI:
10.1007/s00122-012-1954-z
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center