In vivo and in vitro studies on the carotenoid cleavage oxygenases from Sphingopyxis alaskensis RB2256 and Plesiocystis pacifica SIR-1 revealed their substrate specificities and non-retinal-forming cleavage activities

FEBS J. 2012 Oct;279(20):3911-24. doi: 10.1111/j.1742-4658.2012.08751.x. Epub 2012 Sep 11.

Abstract

Carotenoid cleavage oxygenases are nonheme iron enzymes that specifically cleave carbon-carbon double bonds of carotenoids. Their apocarotenoid cleavage products serve as important signaling molecules that are involved in various biological processes. A database search revealed the presence of putative carotenoid cleavage oxygenase genes in the genomes of Sphingopyxis alaskensis RB2256 and Plesiocystis pacifica SIR-1. The four genes sala_1698, sala_1008, ppsir1_15490 and ppsir1_17230 were cloned and heterologously expressed in carotenoid-producing Escherichia coli JM109 strains. Two of the four encoded proteins exhibited carotenoid cleavage activity. S. alaskensis RB2256 carotenoid cleavage oxygenase (SaCCO), which is encoded by sala_1698, was shown to cleave acyclic and monocyclic substrates. Coexpression of sala_1698 in carotenoid-producing E. coli JM109 strains revealed cleavage activity for lycopene, hydroxylycopene, and dihydroxylycopene. The monocyclic substrate apo-8'-carotenal was cleaved in vitro by purified SaCCO at the 9'/10' and 11'/12' double bonds. The second enzyme, P. pacifica SIR-1 carotenoid cleavage oxygenase (PpCCO), is encoded by ppsir1_15490. PpCCO-mediated carotenoid cleavage requires the presence of either hydroxy or keto groups. PpCCO cleaved zeaxanthin, hydroxylycopene, and dihydroxylycopene, and also the C(50) carotenoids decaprenoxanthin, sarprenoxanthin and sarcinaxanthin, in carotenoid-producing E. coli JM109 strains. Whole cells of E. coli JM109 overexpressing ppsir1_15490mut, a mutant of ppsir1_15490 with enhanced gene expression, were applied for the conversion of carotenoids. Analysis of the carotenoid cleavage products revealed a single cleavage site at the 13'/14' double bond for astaxanthin, and two cleavage sites at the 11'/12' or 13'/14' double bond for zeaxanthin, nostoxanthin, and canthaxanthin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Binding Sites
  • Biocatalysis
  • Carotenoids / chemistry
  • Carotenoids / metabolism*
  • Chromatography, Liquid
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Kinetics
  • Lycopene
  • Mass Spectrometry
  • Molecular Structure
  • Mutation
  • Oxygenases / genetics
  • Oxygenases / metabolism*
  • Proteobacteria / classification
  • Proteobacteria / genetics
  • Proteobacteria / metabolism*
  • Retinoids / chemistry
  • Retinoids / metabolism
  • Species Specificity
  • Substrate Specificity
  • Xanthophylls / chemistry
  • Xanthophylls / metabolism

Substances

  • Bacterial Proteins
  • Isoenzymes
  • Retinoids
  • Xanthophylls
  • sarcinaxanthin
  • decaprenoxanthin
  • Carotenoids
  • Oxygenases
  • carotenoid oxygenase
  • Lycopene