Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(8):e42889. doi: 10.1371/journal.pone.0042889. Epub 2012 Aug 10.

Social familiarity governs prey patch-exploitation, -leaving and inter-patch distribution of the group-living predatory mite Phytoseiulus persimilis.

Author information

Group of Arthropod Ecology and Behavior, Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.



In group-living animals, social interactions and their effects on other life activities such as foraging are commonly determined by discrimination among group members. Accordingly, many group-living species evolved sophisticated social recognition abilities such as the ability to recognize familiar individuals, i.e. individuals encountered before. Social familiarity may affect within-group interactions and between-group movements. In environments with patchily distributed prey, group-living predators must repeatedly decide whether to stay with the group in a given prey patch or to leave and search for new prey patches and groups.


Based on the assumption that in group-living animals social familiarity allows to optimize the performance in other tasks, as for example predicted by limited attention theory, we assessed the influence of social familiarity on prey patch exploitation, patch-leaving, and inter-patch distribution of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. P. persimilis is highly specialized on herbivorous spider mite prey such as the two-spotted spider mite Tetranychus urticae, which is patchily distributed on its host plants. We conducted two experiments with (1) groups of juvenile P. persimilis under limited food on interconnected detached leaflets, and (2) groups of adult P. persimilis females under limited food on whole plants. Familiar individuals of both juvenile and adult predator groups were more exploratory and dispersed earlier from a given spider mite patch, occupied more leaves and depleted prey more quickly than individuals of unfamiliar groups. Moreover, familiar juvenile predators had higher survival chances than unfamiliar juveniles.


We argue that patch-exploitation and -leaving, and inter-patch dispersion were more favorably coordinated in groups of familiar than unfamiliar predators, alleviating intraspecific competition and improving prey utilization and suppression.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center