Send to

Choose Destination
Mod Pathol. 2013 Jan;26(1):10-21. doi: 10.1038/modpathol.2012.128. Epub 2012 Aug 17.

Bone morphogenetic protein 4 expression in multiple normal and tumor tissues reveals its importance beyond development.

Author information

Institute of Biomedical Technology, University of Tampere and BioMediTech, Tampere, Finland.


Bone morphogenetic proteins (BMPs) are extracellular signaling molecules that belong to the transforming growth factor β (TGFβ) superfamily and are known to regulate cell proliferation, differentiation and motility, especially during development. BMP4 has an indispensable role in vertebrate development while limited information on BMP4 expression and function exists in adult tissues. Nevertheless, its contribution to cancer development and progression has gained increasing interest in recent years. Functional studies, especially in breast cancer, have implicated BMP4 both in inhibition of cell proliferation and in promotion of cell migration and invasion. To gain an insight into the function of BMP4 in normal and cancer tissues, BMP4 protein expression levels were analyzed by immunohistochemistry in 34 different normal organs/tissues, 34 different tumor types and finally in 486 breast cancer samples where possible associations between BMP4 and clinicopathological parameters were statistically evaluated. In over 20% of normal and malignant tissues, BMP4 was expressed at high level. Strong expression was observed particularly in some normal epithelial cells, such as bladder and stomach, and in squamous cell carcinomas. In breast cancer, strong BMP4 expression was detected in 25% of patients, and was associated with low proliferation index and increased frequency of tumor recurrence. Taken together, BMP4 is expressed in a subset of normal adult tissues and is likely to contribute to tissue homeostasis. However, in tumors, BMP4 expression levels vary considerably, implying diverse roles in different tumor types. This role is biphasic in breast cancer as BMP4 expression is linked to reduced proliferation and increased recurrence, thus corroborating our previous in-vitro functional data.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center