Format

Send to

Choose Destination
See comment in PubMed Commons below
J Synchrotron Radiat. 2012 Sep;19(Pt 5):782-8. doi: 10.1107/S0909049512023990. Epub 2012 Jul 10.

Iron speciation in ancient Attic pottery pigments: a non-destructive SR-XAS investigation.

Author information

1
Institut des Sciences de la Terre (ISTerre), Maison de Geosciences, 1381 rue de la Piscine, 38400 Grenoble, France.

Abstract

The present work reports a detailed investigation on the speciation of iron in the pigments of decorated pottery fragments of cultural heritage relevance. The fragments come from the Gioiosa Guardia archaeological site in the area of the `Strait of Messina' (Sicily, Southern Italy), and date back to VI-V century BC. The purpose of this study is to characterize the main pigmenting agents responsible for the dark-red coloration of the specimens using non-destructive analytical techniques such as synchrotron radiation X-ray absorption spectroscopy (SR-XAS), a well established technique for cultural heritage and environmental subjects. Absorption spectra were collected at the Fe K-edge on the Italian beamline for absorption and diffraction (BM8-GILDA) at the European Synchrotron Radiation Facility in Grenoble (France). In order to determine the speciation of Fe in the samples, principal component analysis and least-squares fitting procedures were applied to the near-edge part of the absorption spectra (XANES). Details on the local structure around the Fe sites were obtained by analyzing the extended part of the spectra (EXAFS). Furthermore, an accurate determination of the average Fe oxidation state was carried out through analysis of the pre-edge peaks of the absorption spectra. Samples resulted composed of an admixture of Fe(2)O(3) (hematite or maghemite) and magnetite (Fe(3)O(4)), occurring in different relative abundance in the dark- and light-colored areas of the specimens. The results obtained are complementary to information previously obtained by means of instrumental neutron activation analysis, Fourier transform infrared absorbance and time-of-flight neutron diffraction.

PMID:
22898958
DOI:
10.1107/S0909049512023990
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for International Union of Crystallography
    Loading ...
    Support Center