Format

Send to

Choose Destination
See comment in PubMed Commons below
Pharmacology. 2012;90(3-4):151-9. doi: 10.1159/000340018. Epub 2012 Aug 7.

Action of lipopolysaccharide on interstitial cells of cajal from mouse small intestine.

Author information

1
Departments of Physiology, College of Medicine, Chosun University, Gwangju, Korea.

Abstract

BACKGROUND AND PURPOSE:

Lipopolysaccharide (LPS) induces intestinal dysmotility by alteration of smooth muscle and enteric neuronal activities. However, there is no report on the modulatory effects of LPS on the interstitial cells of Cajal (ICCs). We investigated the effect of LPS and its signal transduction in ICCs.

METHODS:

We performed whole-cell patch clamp and RT-PCR in cultured ICCs from mouse small intestine.

RESULTS:

LPS suppressed the generation of pacemaker currents of ICCs. The mRNA transcripts for Toll-like receptor 4 (TLR4) were expressed in ICCs. However, the inhibitory action of LPS on pacemaker currents from TLR4(+/+) mice was not present in TLR4(-/-) mice. The inhibitory effects of LPS on ICCs were blocked by glibenclamide (an inhibitor of ATP-sensitive K(+) channels), NS-398 (a COX-2 inhibitor), AH6808 [a prostaglandin E(2) (PGE(2))-EP(2) receptor antagonist], ODQ (an inhibitor of guanylate cyclase) and L-NAME [an inhibitor of nitric oxide synthase (NOS)]. Furthermore, genistein and herbimycin A (tyrosine kinase inhibitors) blocked the LPS-induced inhibitory action on pacemaker activity in ICCs.

CONCLUSIONS:

LPS can activate ICCs to release NO and PGE(2) through TLR4 activation. The released NO and PGE(2) inhibit pacemaker currents by activating ATP-sensitive K(+) channels. The LPS actions are mediated by tyrosine kinase signaling pathways.

PMID:
22890360
DOI:
10.1159/000340018
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for S. Karger AG, Basel, Switzerland
    Loading ...
    Support Center