Format

Send to

Choose Destination
See comment in PubMed Commons below
Philos Trans R Soc Lond B Biol Sci. 2012 Sep 19;367(1602):2607-18. doi: 10.1098/rstb.2012.0014.

An evolutionary perspective on the kinome of malaria parasites.

Author information

1
Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA.

Abstract

Malaria parasites belong to an ancient lineage that diverged very early from the main branch of eukaryotes. The approximately 90-member plasmodial kinome includes a majority of eukaryotic protein kinases that clearly cluster within the AGC, CMGC, TKL, CaMK and CK1 groups found in yeast, plants and mammals, testifying to the ancient ancestry of these families. However, several hundred millions years of independent evolution, and the specific pressures brought about by first a photosynthetic and then a parasitic lifestyle, led to the emergence of unique features in the plasmodial kinome. These include taxon-restricted kinase families, and unique peculiarities of individual enzymes even when they have homologues in other eukaryotes. Here, we merge essential aspects of all three malaria-related communications that were presented at the Evolution of Protein Phosphorylation meeting, and propose an integrated discussion of the specific features of the parasite's kinome and phosphoproteome.

PMID:
22889911
PMCID:
PMC3415840
DOI:
10.1098/rstb.2012.0014
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center