Format

Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2012 Sep 5;60(35):8710-9. doi: 10.1021/jf301527e. Epub 2012 Aug 22.

Insight into the mechanism of coffee melanoidin formation using modified "in bean" models.

Author information

1
CQ-VR, Chemistry Research Centre, Chemistry Department, University of TrĂ¡s-os-Montes e Alto Douro, Vila Real, Portugal. fnunes@utad.pt

Abstract

To study the mechanism of coffee melanoidin formation, green coffee beans were prepared by (1) removal of the hot water extractable components (WECoffee); (2) direct incorporation of sucrose (SucCoffee); and (3) direct incorporation of type II arabinogalactan-proteins (AGPCoffee). As a control of sucrose and AGP incorporation, lyophilized green coffee beans were also immersed in water (control). The original coffee and the four modified "in bean" coffee models were roasted and their chemical characteristics compared. The formation of material not identified as carbohydrates or protein, usually referred to as "unknown material" and related to melanoidins, and the development of the brown color during coffee roasting have distinct origins. Therefore, a new parameter for coffee melanoidin evaluation, named the "melanoidin browning index" (MBI), was introduced to handle simultaneously the two concepts. Sucrose is important for the formation of colored structures but not to the formation of "unknown material". Type II AGPs also increase the brown color of the melanoidins, but did not increase the amount of "unknown material". The green coffee hot water extractable components are essential for coffee melanoidin formation during roasting. The cell wall material was able to generate a large amount of "unknown material". The galactomannans modified by the roasting and the melanoidin populations enriched in galactomannans accounted for 47% of the high molecular weight brown color material, showing that these polysaccharides are very relevant for coffee melanoidin formation.

PMID:
22880950
DOI:
10.1021/jf301527e
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center