Format

Send to

Choose Destination
Microbiology. 2012 Oct;158(Pt 10):2661-6. Epub 2012 Aug 9.

Aerobic glycerol dissimilation via the Enterococcus faecalis DhaK pathway depends on NADH oxidase and a phosphotransfer reaction from PEP to DhaK via EIIADha.

Author information

1
Université de Caen Basse-Normandie, EA4655 U2RM-Stress and Virulence, F-14032 Caen, France. nicolas.sauvageot@unicaen.fr

Abstract

Two pathways for glycerol dissimilation are present in Enterococcus faecalis. Either glycerol is first phosphorylated by glycerol kinase and then oxidized by glycerol-3-phosphate oxidase with molecular oxygen as the electron acceptor (GlpO/GlpK pathway), or it is first oxidized by glycerol dehydrogenase with NAD(+) as the acceptor of the reduction equivalents and then phosphorylated by dihydroxyacetone kinase (GldA/DhaK pathway). The final end product in both cases is dihydroxyacetone phosphate (DHAP). The genes of the GldA/DhaK pathway are present in a four-gene operon structure encoding GldA, a small hypothetical protein (EF1359), and two subunits of dihydroxyacetone kinase (DhaK and DhaL). We demonstrate in this study that protein EF1359 is part of a phosphorylation cascade which phosphorylates dihydroxyacetone in a phosphoenolpyruvate (PEP)-dependent reaction via EI, HPr, EF1359 and DhaLK. Furthermore we show that aerobic dissimilation of glycerol via the GldA/DhaK pathway is dependent on active NADH oxidase to regenerate NADH in Ent. faecalis. A refined model of the aerobic metabolism of glycerol via the GldA/DhaK pathway is presented.

PMID:
22878395
DOI:
10.1099/mic.0.061663-0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center