Format

Send to

Choose Destination
See comment in PubMed Commons below
J Colloid Interface Sci. 2012 Nov 1;385(1):166-73. Epub 2012 Jul 20.

Enhanced adsorption of puerarin onto a novel hydrophilic and polar modified post-crosslinked resin from aqueous solution.

Author information

1
School of Life Sciences, Tsinghua University, Beijing 100084, PR China.

Abstract

A novel of hydrophilic and polar N-vinylpyrrolidone modified post-crosslinked resin was synthesized and the adsorption behaviors toward puerarin from aqueous solution were investigated. The post-crosslinked adsorbent PNVP-DVBpc was prepared by Friedel-Crafts reaction of residual double bonds without external crosslinking agent. The specific surface area of precursor PNVP-DVB increased obviously after post-crosslinking modification. The synthesized adsorbents were characterized by BET surface area, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The adsorption behaviors of puerarin from aqueous solution onto precursor PNVP-DVB and post-crosslinked adsorbent PNVP-DVBpc were thoroughly researched. Commercial polymeric adsorbents Amberlite XAD-4 and AB-8 were chosen as the comparison. Among the four media, PNVP-DVBpc presented the largest adsorption capacity of puerarin, which resulted from the synergistic effect of high specific surface area and polar groups (amide groups) onto the adsorbent matrix. Experimental results showed that equilibrium isotherms could be fitted by Freundlich model and the kinetic data could be characterized by pseudo-second order model reasonably. Column adsorption experiments indicated that the puerarin could be completely desorbed by 4.0 BV industrial alcohol. Continuous column adsorption-regeneration cycles demonstrated the PNVP-DVBpc without any significant adsorption capacity loss during operation.

PMID:
22878002
DOI:
10.1016/j.jcis.2012.07.006
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center