Format

Send to

Choose Destination
PLoS One. 2012;7(8):e42360. doi: 10.1371/journal.pone.0042360. Epub 2012 Aug 2.

The importance of GLUT3 for de novo lipogenesis in hypoxia-induced lipid loading of human macrophages.

Author information

1
Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Abstract

Atherosclerotic lesions are characterized by lipid-loaded macrophages (foam cells) and hypoxic regions. Although it is well established that foam cells are produced by uptake of cholesterol from oxidized LDL, we previously showed that hypoxia also promotes foam cell formation even in the absence of exogenous lipids. The hypoxia-induced lipid accumulation results from increased triglyceride biosynthesis but the exact mechanism is unknown. Our aim was to investigate the importance of glucose in promoting hypoxia-induced de novo lipid synthesis in human macrophages. In the absence of exogenous lipids, extracellular glucose promoted the accumulation of Oil Red O-stained lipid droplets in human monocyte-derived macrophages in a concentration-dependent manner. Lipid droplet accumulation was higher in macrophages exposed to hypoxia at all assessed concentrations of glucose. Importantly, triglyceride synthesis from glucose was increased in hypoxic macrophages. GLUT3 was highly expressed in macrophage-rich and hypoxic regions of human carotid atherosclerotic plaques and in macrophages isolated from these plaques. In human monocyte-derived macrophages, hypoxia increased expression of both GLUT3 mRNA and protein, and knockdown of GLUT3 with siRNA significantly reduced both glucose uptake and lipid droplet accumulation. In conclusion, we have shown that hypoxia-induced increases in glucose uptake through GLUT3 are important for lipid synthesis in macrophages, and may contribute to foam cell formation in hypoxic regions of atherosclerotic lesions.

PMID:
22876317
PMCID:
PMC3410913
DOI:
10.1371/journal.pone.0042360
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center