Format

Send to

Choose Destination
See comment in PubMed Commons below

A statistics-based approach of contextualization for adverse drug events detection and prevention.

Author information

  • 1Public Health Department, Lille, France. emmanuel.chazard@univ-lille2.fr

Abstract

Several papers propose to take contexts into account for adverse drug events (ADE) detection and prevention, notably to decrease over-alerting of clinical decision support systems (CDSS). However, no statistical argument has been published till now. This works demonstrates, based on statistical analysis, that contextualization is necessary for ADE detection and prevention by 3 steps. A database of 115,447 inpatients stays from 6 hospitals, and 236 ADE detection rules are used. Step 1: the patients differ significantly between and within hospitals, regarding their medical background, their medication and several outcomes. Step 2: The estimated ADE rates vary between and within hospitals. Step 3: even when comparable conditions are present, the probability of ADE occurrence may differ between and within hospitals. Those 3 steps demonstrate that contextualization is necessary, and pave the way for a statistics-based method to contextualize ADE prevention (CDSS) and ADE detection tools.

PMID:
22874295
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOS Press
    Loading ...
    Support Center