Send to

Choose Destination
See comment in PubMed Commons below
Genomics. 1990 Nov;8(3):541-54.

Genomic structure and comparison of mouse tissue-specific alkaline phosphatase genes.

Author information

  • 1La Jolla Cancer Research Foundation, California 92037.


A full-length human placental alkaline phosphatase (AP) cDNA was used to identify and clone related genes from mouse genomic libraries. We report the cloning, sequence, and structural comparison of the mouse embryonic and intestinal AP genes and a putative AP pseudogene. All three mouse genes are composed of 11 exons interrupted by 10 small introns (70-261 bp) with an organization analogous to that of the three human tissue-specific AP genes. Introns interrupt the coding sequences at identical positions in all three mouse and human tissue-specific AP genes. The deduced amino acid sequence of the isozymes predicts proproteins of 529, 559, and 466 amino acids for embryonic AP, intestinal AP, and pseudo-AP, respectively. A repetitive sequence inserted in exon XI of the mouse intestinal AP gene codes for a unique stretch of 41 amino acids, 20 of which are threonines. This insertion has disrupted a region recognized as being responsible for phosphatidylinositol anchorage of human placental AP to the cytoplasmic membrane. Phylogenetic analysis indicates that the three mouse AP isozymes form a distinct group separate from the human tissue-specific AP isozymes, suggesting the taxon-specific evolution of the AP genes as opposed to independent evolution of AP genes expressed in specific tissues.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center