Send to

Choose Destination
J Int Soc Sports Nutr. 2012 Aug 2;9(1):37. doi: 10.1186/1550-2783-9-37.

Improved training tolerance by supplementation with α-Keto acids in untrained young adults: a randomized, double blind, placebo-controlled trial.

Author information

Section of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, Ulm, D-89070, Germany.



Exercise causes a variety of physiological and metabolic changes that can in turn reduce exercise tolerance. One of the potential mechanisms responsible for fatigue is "exercise-induced hyperammonemia". Previous studies have shown that supplementation with amino acids can increase training tolerance. The α-keto acids are biochemical analogs of amino acids and can be converted to amino acids through transamination, thus reducing the cellular ammonia level. This double blind, placebo-controlled study was designed to investigate the effects of α-keto acid supplementation (KAS) on training tolerance, training effect, and stress-recovery state.


Thirty-three untrained young male adults underwent four weeks of training (5 sessions/week; 30 minutes running at the individual anaerobic threshold followed by 3 x 3 minute sprints/each session). Throughout the 4 weeks of training and one week of recovery, subjects took α-ketoglutarate (AKG group, 0.2 g/kg/d, n = 9), branched-chain keto acids (BCKA group, 0.2 g/kg/d, n = 12) or isocaloric placebo (control group, n = 12) daily.


The 4th week training volume, maximum power output and muscle torque were higher in the AKG group (175 ± 42 min, 412 ± 49 Watts and 293 ± 58 Newton meters, respectively, P<0.05) and the BCKA group (158 ± 35, 390 ± 29 and 273 ± 47, P<0.05) than in the control group (92 ± 70, 381 ± 67 and 233 ± 43). The general stress and emotional exhaustion as assessed by the rest-stress-questionnaire-sport after the 3rd week of training increased significantly in the control group (P<0.05), but not in the KAS groups.


Under KAS, subjects could bear a higher training volume and reach a higher power output and peak muscle torque, accompanied by a better stress-recovery-state. Thus, KAS improves exercise tolerance and training effects along with a better stress-recovery state. Whether the improved training tolerance by KAS is associated with effects on ammonia homeostasis requires further observation.

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center