Format

Send to

Choose Destination
See comment in PubMed Commons below
Drug Test Anal. 2012 Aug;4 Suppl 1:40-9. doi: 10.1002/dta.1354.

A review of analytical strategies for the detection of 'endogenous' steroid abuse in food production.

Author information

1
HFL Sport Science (an LGC company), Fordham, Cambridgeshire, UK. jscarth@hfl.co.uk

Abstract

Detection of the abuse of synthetic steroids in food production is nowadays relatively straightforward using modern techniques such as gas or liquid chromatography coupled to mass spectrometry (GC-MS/MS or LC-MS/MS, respectively). However, proving the abuse of 'endogenous' (or naturally occurring) steroids is more difficult. Despite these difficulties, significant progress in this area has recently been made and a number of methods are now available. The aim of the current review was to systematically review the available analytical approaches, which include threshold concentrations, qualitative 'marker' metabolites, intact steroid esters, gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), longitudinal testing and 'omics' biomarker profiling. The advantages/disadvantages of these methods are considered in detail, but the choice of which to adopt is dictated by a number of practical, political, and economic factors, which vary in different parts of the world. These include the steroid/species combination requiring analysis, the matrix tested, whether samples are collected from live or slaughtered animals, available analytical instrumentation, sample throughput/cost, and the relevant legal/regulatory frameworks. Furthermore, these approaches could be combined in a range of different parallel and/or sequential screening/confirmatory testing streams, with the final choice being determined by the aforementioned considerations. Despite these advances, more work is required to refine the different techniques and to respond to the ever increasing list of compounds classified as 'endogenous'. At this advanced stage, however, it is now more important than ever for scientists and regulators from across the world to communicate and collaborate in order to harmonize and streamline research efforts.

PMID:
22851360
DOI:
10.1002/dta.1354
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center