Format

Send to

Choose Destination
See comment in PubMed Commons below
J Recept Signal Transduct Res. 2012 Oct;32(5):271-8. Epub 2012 Jul 31.

Effect of diindolylmethane on Ca2+ homeostasis and viability in PC3 human prostate cancer cells.

Author information

1
Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.

Abstract

The effect of the natural product diindolylmethane on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in PC3 human prostate cancer cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)](i). Diindolylmethane at concentrations of 20-50 µM induced [Ca(2+)](i) rise in a concentration-dependent manner. The response was reduced partly by removing Ca(2+). Diindolylmethane-evoked Ca(2+) entry was suppressed by nifedipine, econazole, SK&F96365, protein kinase C modulators and aristolochic acid. In the absence of extracellular Ca(2+), incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca(2+)](i) rise. Incubation with diindolylmethane also inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca(2+)](i) rise. At concentrations of 50-100 µM, diindolylmethane killed cells in a concentration-dependent manner. This cytotoxic effect was not altered by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Annexin V/PI staining data implicate that diindolylmethane (50 and 100 µM) induced apoptosis in a concentration-dependent manner. In conclusion, diindolylmethane induced a [Ca(2+)](i) rise in PC3 cells by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via phospholipase A(2)-sensitive store-operated Ca(2+) channels. Diindolylmethane caused cell death in which apoptosis may participate.

PMID:
22845469
DOI:
10.3109/10799893.2012.707212
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center