2D-1D structural phase transformation of Co(II) 3,5-pyridinedicarboxylate frameworks with chromotropism

Dalton Trans. 2012 Sep 21;41(35):10698-706. doi: 10.1039/c2dt31183f. Epub 2012 Jul 30.

Abstract

Two new metal-organic frameworks [Co(pydc)(H(2)O)(2)](n) (1) and [Co(pydc)(H(2)O)(4)](n)(H(2)O)(n) (2), (pydc = 3,5-pyridinedicarboxylate) have been synthesized by a diffusion method and characterized by single-crystal X-ray diffraction. The structure of 1 reveals an infinite 2D layer with honeycomb-like cavities in which each pydc ligand bridges three Co(II) ions. The adjacent 2D layers are orderly packed in an ABAB-type array via intermolecular interactions of the combined π-π stacking and hydrogen bonds to form a 3D supramolecular architecture. Interestingly, compound 1 exhibits a water induced crystal-to-amorphous transformation with chromotropism confirmed by spectroscopic techniques, elemental analysis, TGA and XRPD. When this amorphous phase (1A) was exposed to water vapor, it was readily converted into the second crystalline phase 1B with a color change. Moreover, a reversible process between 1A and 1B was performed. In the case of compound 2, pydc acts as didentate bridging ligand connecting two Co(II) ions, leading to a 1D zig-zag chain. Guest water molecules fill the gaps in between chains and form hydrogen bonds with the host chains stabilizing the 3D network of 2. Additionally, compound 2 also exhibits a water induced crystal-to-amorphous transformation with chromotropism and the reversible process was also performed between the dehydrated (2A) and rehydrated (2') forms. Surprisingly, the IR and UV-vis spectra, elemental analysis, TGA curve and XRPD pattern of the rehydrated second phase 1B are found to be identical to that of 2 and 2', these results confirm that 2, 2' and 1B are the same compound.

MeSH terms

  • Cobalt / chemistry*
  • Coordination Complexes / chemical synthesis
  • Coordination Complexes / chemistry*
  • Crystallography, X-Ray
  • Hydrogen Bonding
  • Molecular Conformation

Substances

  • Coordination Complexes
  • Cobalt