Send to

Choose Destination
Biochim Biophys Acta. 2012 Dec;1824(12):1351-7. doi: 10.1016/j.bbapap.2012.07.007. Epub 2012 Jul 27.

Compatible solutes contribute to heat resistance and ribosome stability in Escherichia coli AW1.7.

Author information

University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada T6G 2P5.


This study investigated the mechanisms of heat resistance in Escherichia coli AW1.7 by quantification of cytoplasmic solutes, determination of ribosome denaturation, and by determination of protein denaturation. To assess the contribution of heat shock proteins and compatible solutes, experiments were conducted after exposure to sublethal heat shock, and with cultures grown at NaCl concentrations ranging from 0 to 6%. Heat resistance of E. coli AW1.7 was compared to the heat sensitive E. coli GGG10 and a plasmid-cured, heat sensitive derivative of E. coli AW1.7 named E. coli AW1.7ΔpHR1. Sublethal heat shock improved survival at 60°C of E. coli GGG10 and AW1.7ΔpHR1 but not of E. coli AW1.7. Addition of NaCl increased the heat resistance of all three strains, but only E. coli AW1.7 exhibited high heat resistance when grown in NaCl concentrations ranging from 2 to 6%. E. coli AW1.7 and GGG10 accumulated 16.1 ± 0.8 and 8.8 ± 0.8mmolL⁻¹ amino acids when grown at 0% NaCl, and 1.47 ± 0.07 and 0.78 ± 0.06mmolL⁻¹ carbohydrates when grown at 6% NaCl, respectively. Ribosome denaturation was determined by differential scanning calorimetry. After growth in the presence of 0% NaCl, the 30S subunit denatured at 63.7 ± 0.8°C and 60.7 ± 0.3°C in E. coli AW1.7 and GGG10, respectively. Fourier-transformed-infrared-spectroscopy did not indicate differences in protein denaturation between the strains during heating. In conclusion, heat resistance in E. coli AW1.7 correlates to ribosome stability at 60°C and is dependent on accumulation of cytoplasmic solutes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center