Send to

Choose Destination
J Appl Physiol (1985). 2012 Oct;113(7):988-95. doi: 10.1152/japplphysiol.00438.2012. Epub 2012 Jul 26.

Relating components of pressure-volume area in Suga's formulation of cardiac energetics to components of the stress-time integral.

Author information

Auckland Bioengineering Institute, Auckland, New Zealand.


The concept of pressure-volume area (PVA) in whole heart studies is central to the phenomenological description of cardiac energetics proposed by Suga and colleagues (Physiol Rev 70: 247-277, 1990). PVA consists of two components: an approximately rectangular work loop (W) and an approximately triangular region of potential energy (U). In the case of isovolumic contractions, PVA consists entirely of U. The utility of Suga's description of cardiac energetics is the observation that the oxygen consumption of the heart (Vo(2)) is linearly dependent on PVA. By using isolated ventricular trabeculae, we found a basis on which to correlate the components of stress-length area (SLA; i.e., the 1-D equivalent of PVA) with specific regions of the stress-time integral (STI; i.e., the area under the force-time profile of a single twitch). In each case, proportionality obtains and is robust, independent of the type of twitch contraction (isometric or isotonic), and insensitive to changes of preload or afterload. We apply our results by examining retrospectively the interpretations reached in three independent studies published in the literature.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center