Send to

Choose Destination
See comment in PubMed Commons below
J Endocrinol. 2012 Oct;215(1):51-8. doi: 10.1530/JOE-12-0088. Epub 2012 Jul 25.

Alterations of LXRα and LXRβ expression in the hypothalamus of glucose-intolerant rats.

Author information

Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.


Liver X receptor (LXR) α and β are nuclear receptors that are crucial for the regulation of carbohydrate and lipid metabolism. Activation of LXRs in the brain facilitates cholesterol clearance and improves cognitive deficits, thus they are considered as promising drug targets to treat diseases such as atherosclerosis and Alzheimer's disease. Nevertheless, little is known about the function and localization of LXRs in the brain. Here, we studied the expression of LXR in the brains of rats that received free access to 10% (w/v) fructose group (FG) in their beverages or water control drinks (control group (CG)). After 6 weeks rats in the FG presented with hypertriglyceridemia, hyperinsulinemia, and became glucose intolerant, suggesting a progression toward type 2 diabetes. We found that hypothalamic LXR expression was altered in fructose-fed rats. Rats in the FG presented with a decrease in LXRβ levels while showing an increase in LXRα expression in the hypothalamus but not in the hippocampus, cerebellum, or neocortex. Moreover, both LXRα and β expression correlated negatively with insulin and triglyceride levels. Interestingly, LXRβ showed a negative correlation with the area under the curve during the glucose tolerance test in the CG and a positive correlation in the FG. Immunocytochemistry revealed that the paraventricular and ventromedial nuclei express mainly LXRα whereas the arcuate nucleus expresses LXRβ. Both LXR immunosignals were found in the median preoptic area. This is the first study showing a relationship between glucose and lipid homeostasis and the expression of LXRs in the hypothalamus, suggesting that LXRs may trigger neurochemical and neurophysiological responses for the control of food intake and energy expenditure through these receptors.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center