Format

Send to

Choose Destination
J Am Chem Soc. 2012 Aug 22;134(33):13708-15. doi: 10.1021/ja303225e. Epub 2012 Aug 10.

Phase transformation and lithiation effect on electronic structure of Li(x)FePO4: an in-depth study by soft X-ray and simulations.

Author information

1
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

Abstract

Through soft X-ray absorption spectroscopy, hard X-ray Raman scattering, and theoretical simulations, we provide the most in-depth and systematic study of the phase transformation and (de)lithiation effect on electronic structure in Li(x)FePO(4) nanoparticles and single crystals. Soft X-ray reveals directly the valence states of Fe 3d electrons in the vicinity of Fermi level, which is sensitive to the local lattice distortion, but more importantly offers detailed information on the evolution of electronic states at different electrochemical stages. The soft X-ray spectra of Li(x)FePO(4) nanoparticles evolve vividly with the (de)lithiation level. The spectra fingerprint the (de)lithiation process with rich information on Li distribution, valency, spin states, and crystal field. The high-resolution spectra reveal a subtle but critical deviation from two-phase transformation in our electrochemically prepared samples. In addition, we performed both first-principles calculations and multiplet simulations of the spectra and quantitatively determined the 3d valence states that are completely redistributed through (de)lithiation. This electronic reconfiguration was further verified by the polarization-dependent spectra collected on LiFePO(4) single crystals, especially along the lithium diffusion direction. The evolution of the 3d states is overall consistent with the local lattice distortion and provides a fundamental picture of the (de)lithiation effects on electronic structure in the Li(x)FePO(4) system.

PMID:
22835006
DOI:
10.1021/ja303225e

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center