Format

Send to

Choose Destination
See comment in PubMed Commons below
Pain. 2012 Sep;153(9):1965-73. doi: 10.1016/j.pain.2012.06.019. Epub 2012 Jul 20.

Sex differences in spinal processing of transient and inflammatory colorectal stimuli in the rat.

Author information

1
Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA.

Abstract

Sex differences in the spinal processing of somatic and visceral stimuli contribute to greater female sensitivity in many pain disorders. The present study examined spinal mechanisms that contribute to sex differences in visceral sensitivity. The visceromotor response to colorectal distention (CRD) was more robust in normal female rats and after intracolonic mustard oil compared with that in male rats. No sex difference was observed in the CRD-evoked response of lumbosacral (LS) and thoracolumbar (TL) colonic afferents in normal and mustard oil-treated rats, but there was a sex difference in spontaneous activity that was exacerbated by intracolonic mustard oil. The response of visceroceptive dorsal horn neurons to CRD was greater in normal female rats in the LS and TL spinal segments. The effect of intracolonic mustard oil on the CRD-evoked response of different phenotypes of visceroceptive dorsal horn neurons was dependent on sex and segment. The NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) dose-dependently attenuated the visceromotor response in normal rats with greater effect in male rats. Correspondingly, there was greater cell membrane expression of the GluN1 subunit in dorsal horn extracts in female rats. After intracolonic mustard oil, there was no longer a sex difference in the effect of APV nor GluN1 expression in LS segments, but greater female expression in TL segments. These data document a sex difference in spinal processing of nociceptive visceral stimuli from the normal and inflamed colon. Differences in dorsal horn neuronal activity and NMDA receptor expression contribute to the sex differences in the visceral sensitivity observed in awake rats.

PMID:
22819535
PMCID:
PMC3413769
DOI:
10.1016/j.pain.2012.06.019
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins Icon for PubMed Central
    Loading ...
    Support Center