Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(7):e40659. doi: 10.1371/journal.pone.0040659. Epub 2012 Jul 10.

Soil eukaryotic microorganism succession as affected by continuous cropping of peanut--pathogenic and beneficial fungi were selected.

Author information

1
Shandong Peanut Research Institute, Qingdao, China.

Abstract

Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping.

PMID:
22808226
PMCID:
PMC3393692
DOI:
10.1371/journal.pone.0040659
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substance, Secondary source ID

Publication type

MeSH terms

Substance

Secondary source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center