Format

Send to

Choose Destination
See comment in PubMed Commons below
J Appl Toxicol. 2013 Nov;33(11):1222-9. doi: 10.1002/jat.2771. Epub 2012 Jul 13.

Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol.

Author information

1
Graduate School of Integrated Arts and Sciences, The University of Tokushima, Tokushima, Japan.

Abstract

Acute and chronic (or sub-chronic) toxicity of five selected antimicrobial agents, including triclosan (TCS), triclocarban (TCC), resorcinol, phenoxyethanol and p-thymol, was investigated using the conventional three-aquatic-organism battery. These compounds are widely used in cosmetics and other personal care products and their ecological risk has recently become a significant concern. As results of toxicity tests, TCS was found to be most strongly toxic for green algae [e.g. 72 h no observed effect concentration (NOEC) of 0.50 µg l(-1) ] among the selected compounds, followed by TCC, while TCC was more toxic or similar to TCS for Daphnia and fish (e.g. Daphnia 8 day NOEC of 1.9 µg l(-1) ). Having compared the predicted no effect concentration (PNEC) determined from the toxicity data with measured environmental concentrations (MEC), the preliminary ecological risk assessment of these five antimicrobials was conducted. The MEC/PNEC ratios of TCS and TCC were over 1 for some monitoring data, especially in urban streams with watershed areas without sewage service coverage, and their potential risk for green algae and Daphnia might be at a level of concern, although the contribution of TCS/TCC on the total toxicity of the those sites needs to be further investigated. For the three other antimicrobials, the maximum MEC/PNEC ratio for resorcinol was 0.1-1, but those for phenoxyethanol and p-thymol were <0.1 and their risk to aquatic organisms is limited, although the additive effects with TCS, TCC and other antimicrobial agents, such as parabens, need to be further examined in future studies.

KEYWORDS:

Ceriodaphnia dubia; antimicrobial agents; ecological risk; ecotoxicity; green algae; phenoxyethanol; triclocarban; triclosan

PMID:
22806922
DOI:
10.1002/jat.2771
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center