Send to

Choose Destination
Nat Commun. 2012 Jul 17;3:950. doi: 10.1038/ncomms1954.

Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids.

Author information

Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station, A4800, Austin, Texas 78712, USA.


Gene-expression divergence between species shapes morphological evolution, but the molecular basis is largely unknown. Here we show cis- and trans-regulatory elements and chromatin modifications on gene-expression diversity in genetically tractable Arabidopsis allotetraploids. In Arabidopsis thaliana and Arabidopsis arenosa, both cis and trans with predominant cis-regulatory effects mediate gene-expression divergence. The majority of genes with both cis- and trans-effects are subjected to compensating interactions and stabilizing selection. Interestingly, cis- and trans-regulation is associated with chromatin modifications. In F1 allotetraploids, Arabidopsis arenosa trans factors predominately affect allelic expression divergence. Arabidopsis arenosa trans factors tend to upregulate Arabidopsis thaliana alleles, whereas Arabidopsis thaliana trans factors up- or down-regulate Arabidopsis arenosa alleles. In resynthesized and natural allotetraploids, trans effects drive expression of both homoeologous loci into the same direction. We provide evidence for natural selection and chromatin regulation in shaping gene-expression diversity during plant evolution and speciation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center