Send to

Choose Destination
Biochim Biophys Acta. 2013 Feb;1827(2):94-113. doi: 10.1016/j.bbabio.2012.07.002. Epub 2012 Jul 16.

Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation.

Author information

Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043 Marburg, and Fachbereich Biologie, Philipps-Universität, Marburg, Germany.


The review describes four flavin-containing cytoplasmatic multienzyme complexes from anaerobic bacteria and archaea that catalyze the reduction of the low potential ferredoxin by electron donors with higher potentials, such as NAD(P)H or H(2) at ≤ 100 kPa. These endergonic reactions are driven by concomitant oxidation of the same donor with higher potential acceptors such as crotonyl-CoA, NAD(+) or heterodisulfide (CoM-S-S-CoB). The process called flavin-based electron bifurcation (FBEB) can be regarded as a third mode of energy conservation in addition to substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP). FBEB has been detected in the clostridial butyryl-CoA dehydrogenase/electron transferring flavoprotein complex (BcdA-EtfBC), the multisubunit [FeFe]hydrogenase from Thermotoga maritima (HydABC) and from acetogenic bacteria, the [NiFe]hydrogenase/heterodisulfide reductase (MvhADG-HdrABC) from methanogenic archaea, and the transhydrogenase (NfnAB) from many Gram positive and Gram negative bacteria and from anaerobic archaea. The Bcd/EtfBC complex that catalyzes electron bifurcation from NADH to the low potential ferredoxin and to the high potential crotonyl-CoA has already been studied in some detail. The bifurcating protein most likely is EtfBC, which in each subunit (βγ) contains one FAD. In analogy to the bifurcating complex III of the mitochondrial respiratory chain and with the help of the structure of the human ETF, we propose a conformational change by which γ-FADH(-) in EtfBC approaches β-FAD to enable the bifurcating one-electron transfer. The ferredoxin reduced in one of the four electron bifurcating reactions can regenerate H(2) or NADPH, reduce CO(2) in acetogenic bacteria and methanogenic archaea, or is converted to ΔμH(+)/Na(+) by the membrane-associated enzyme complexes Rnf and Ech, whereby NADH and H(2) are recycled, respectively. The mainly bacterial Rnf complexes couple ferredoxin oxidation by NAD(+) with proton/sodium ion translocation and the more diverse energy converting [NiFe]hydrogenases (Ech) do the same, whereby NAD(+) is replaced by H(+). Many organisms also use Rnf and Ech in the reverse direction to reduce ferredoxin driven by ΔμH(+)/Na(+). Finally examples are shown, in which the four bifurcating multienzyme complexes alone or together with Rnf and Ech are integrated into energy metabolisms of nine anaerobes. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center