Format

Send to

Choose Destination
ACS Nano. 2012 Aug 28;6(8):7103-13. doi: 10.1021/nn3021772. Epub 2012 Jul 23.

Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores.

Author information

1
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China.

Abstract

Liquid crystals of anisotropic colloids are of great significance in the preparation of their ordered macroscopic materials, for example, in the cases of carbon nanotubes and graphene. Here, we report a facile and scalable spinning process to prepare neat "core-shell" structured graphene aerogel fibers and three-dimensional cylinders with aligned pores from the flowing liquid crystalline graphene oxide (GO) gels. The uniform alignment of graphene sheets, inheriting the lamellar orders from GO liquid crystals, offers the porous fibers high specific tensile strength (188 kN m kg(-1)) and the porous cylinders high compression modulus (3.3 MPa). The porous graphene fibers have high specific surface area up to 884 m(2) g(-1) due to their interconnected pores and exhibit fine electrical conductivity (2.6 × 10(3) to 4.9 × 10(3) S m(-1)) in the wide temperature range of 5-300 K. The decreasing conductivity with decreasing temperature illustrates a typical semiconducting behavior, and the 3D interconnected network of 2D graphene sheets determines a dual 2D and 3D hopping conduction mechanism. The strong mechanical strength, high porosity, and fine electrical conductivity enable this novel material of ordered graphene aerogels to be greatly useful in versatile catalysts, supercapacitors, flexible batteries and cells, lightweight conductive fibers, and functional textiles.

PMID:
22799441
DOI:
10.1021/nn3021772
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center