Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Biol Sci. 2012 Sep 22;279(1743):3706-15. Epub 2012 Jul 11.

The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes and intragenomic conflict.

Author information

1
Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland. daniel.rankin@ieu.uzh.ch

Abstract

Bacterial genomes commonly contain 'addiction' gene complexes that code for both a toxin and a corresponding antitoxin. As long as both genes are expressed, cells carrying the complex can remain healthy. However, loss of the complex (including segregational loss in daughter cells) can entail death of the cell. We develop a theoretical model to explore a number of evolutionary puzzles posed by toxin-antitoxin (TA) population biology. We first extend earlier results demonstrating that TA complexes can spread on plasmids, as an adaptation to plasmid competition in spatially structured environments, and highlight the role of kin selection. We then considered the emergence of TA complexes on plasmids from previously unlinked toxin and antitoxin genes. We find that one of these traits must offer at least initially a direct advantage in some but not all environments encountered by the evolving plasmid population. Finally, our study predicts non-transitive 'rock-paper-scissors' dynamics to be a feature of intragenomic conflict mediated by TA complexes. Intragenomic conflict could be sufficient to select deleterious genes on chromosomes and helps to explain the previously perplexing observation that many TA genes are found on bacterial chromosomes.

PMID:
22787022
PMCID:
PMC3415908
DOI:
10.1098/rspb.2012.0942
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center