Format

Send to

Choose Destination
Mol Cancer Ther. 2012 Oct;11(10):2127-37. doi: 10.1158/1535-7163.MCT-12-0342. Epub 2012 Jul 10.

Cell intrinsic role of COX-2 in pancreatic cancer development.

Author information

1
Corresponding Author: Hong Wu, Department of Molecular and Medical Pharmacology, CHS 33-131, 650 CE Young Drive South, Los Angeles, CA 90095, USA.

Abstract

COX-2 is upregulated in pancreatic ductal adenocarcinomas (PDAC). However, how COX-2 promotes PDAC development is unclear. While previous studies have evaluated the efficacy of COX-2 inhibition via the use of nonsteroidal anti-inflammatory drugs (NSAID) or the COX-2 inhibitor celecoxib in PDAC models, none have addressed the cell intrinsic versus microenvironment roles of COX-2 in modulating PDAC initiation and progression. We tested the cell intrinsic role of COX-2 in PDAC progression using both loss-of-function and gain-of-function approaches. Cox-2 deletion in Pdx1+ pancreatic progenitor cells significantly delays the development of PDAC in mice with K-ras activation and Pten haploinsufficiency. Conversely, COX-2 overexpression promotes early onset and progression of PDAC in the K-ras mouse model. Loss of PTEN function is a critical factor in determining lethal PDAC onset and overall survival. Mechanistically, COX-2 overexpression increases p-AKT levels in the precursor lesions of Pdx1(+); K-ras(G12D)(/+); Pten(lox)(/+) mice in the absence of Pten LOH. In contrast, Cox-2 deletion in the same setting diminishes p-AKT levels and delays cancer progression. These data suggest an important cell intrinsic role for COX-2 in tumor initiation and progression through activation of the PI3K/AKT pathway. PDAC that is independent of intrinsic COX-2 expression eventually develops with decreased FKBP5 and increased GRP78 expression, two alternate pathways leading to AKT activation. Together, these results support a cell intrinsic role for COX-2 in PDAC development and suggest that while anti-COX-2 therapy may delay the development and progression of PDAC, mechanisms known to increase chemoresistance through AKT activation must also be overcome.

PMID:
22784710
PMCID:
PMC3469770
DOI:
10.1158/1535-7163.MCT-12-0342
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center