Send to

Choose Destination
New Phytol. 2012 Oct;196(1):223-37. doi: 10.1111/j.1469-8137.2012.04226.x. Epub 2012 Jul 11.

StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst.

Author information

Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.


• Potato (Solanum tuberosum) calcium-dependent protein kinase (StCDPK5) has been shown to phosphorylate the N-terminal region of plasma membrane RBOH (respiratory burst oxidase homolog) proteins, and participate in StRBOHB-mediated reactive oxygen species (ROS) burst. The constitutively active form, StCDPK5VK, provides a useful tool for gain-of-function analysis of RBOH in defense responses. • StCDPK5- and StCDPK5VK-green fluorescent protein fusion proteins were predominantly targeted to the plasma membrane, and conditional expression of StCDPK5VK activated StRBOHA-D. The interaction was confirmed by bimolecular fluorescence complementation assay. We generated transgenic potato plants containing StCDPK5VK under the control of a pathogen-inducible promoter to investigate the role of ROS burst on defense responses to blight pathogens. • Virulent isolates of the late blight pathogen Phytophthora infestans and the early blight pathogen Alternaria solani induced hypersensitive response-like cell death accompanied by ROS production at the infection sites of transgenic plants. Transgenic plants showed resistance to the near-obligate hemibiotrophic pathogen P. infestans and, by contrast, increased susceptibility to the necrotrophic pathogen A. solani. • These results indicate that RBOH-dependent ROS contribute to basal defense against near-obligate pathogens, but have a negative role in resistance or have a positive role in expansion of disease lesions caused by necrotrophic pathogens.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center