Format

Send to

Choose Destination
Nano Lett. 2012 Aug 8;12(8):4117-23. doi: 10.1021/nl301655d. Epub 2012 Jul 17.

Assessing graphene nanopores for sequencing DNA.

Author information

1
Department of Physics, University of Illinois, 1110 W. Green St., Urbana, Illinois 61801, USA.

Abstract

Using all-atom molecular dynamics and atomic-resolution Brownian dynamics, we simulate the translocation of single-stranded DNA through graphene nanopores and characterize the ionic current blockades produced by DNA nucleotides. We find that transport of single DNA strands through graphene nanopores may occur in single nucleotide steps. For certain pore geometries, hydrophobic interactions with the graphene membrane lead to a dramatic reduction in the conformational fluctuations of the nucleotides in the nanopores. Furthermore, we show that ionic current blockades produced by different DNA nucleotides are, in general, indicative of the nucleotide type, but very sensitive to the orientation of the nucleotides in the nanopore. Taken together, our simulations suggest that strand sequencing of DNA by measuring the ionic current blockades in graphene nanopores may be possible, given that the conformation of DNA nucleotides in the nanopore can be controlled through precise engineering of the nanopore surface.

PMID:
22780094
PMCID:
PMC3434709
DOI:
10.1021/nl301655d
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center