Format

Send to

Choose Destination
ACS Chem Neurosci. 2010 Apr 21;1(4):279-87. doi: 10.1021/cn900027u. Epub 2010 Jan 27.

Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation.

Author information

1
Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland. celiacl@uvigo.es

Abstract

The fibrillation kinetics of the amyloid β peptide is analyzed in presence of cationic polystyrene nanoparticles of different size. The results highlight the importance of the ratio between the peptide and particle concentration. Depending on the specific ratio, the kinetic effects vary from acceleration of the fibrillation process by reducing the lag phase at low particle surface area in solution to inhibition of the fibrillation process at high particle surface area. The kinetic behavior can be explained if we assume a balance between two different pathways: first fibrillation of free monomer in solution and second nucleation and fibrillation promoted at the particle surface. The overall rate of fibrillation will depend on the interplay between these two pathways, and the predominance of one mechanism over the other will be determined by the relative equilibrium and rate constants.

KEYWORDS:

Amyloid; aggregation kinetics; nanoparticles

PMID:
22778827
PMCID:
PMC3368671
DOI:
10.1021/cn900027u
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center