Format

Send to

Choose Destination
Sensors (Basel). 2012;12(5):6244-68. doi: 10.3390/s120506244. Epub 2012 May 10.

FPGA implementation of Generalized Hebbian Algorithm for texture classification.

Author information

1
Department of Electronic Engineering, National Ilan University, Yilan 260, Taiwan. sjlin@niu.edu.tw

Abstract

This paper presents a novel hardware architecture for principal component analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because of its simplicity and effectiveness. The architecture is separated into three portions: the weight vector updating unit, the principal computation unit and the memory unit. In the weight vector updating unit, the computation of different synaptic weight vectors shares the same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture classification system based on the proposed architecture is physically implemented by Field Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip (SOPC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient design for attaining both high speed performance and low area costs.

KEYWORDS:

FPGA; generalized Hebbian algorithm; principal component analysis; reconfigurable computing; system on programmable chip; texture classification

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center