Format

Send to

Choose Destination
Eur Radiol. 2012 Dec;22(12):2568-80. doi: 10.1007/s00330-012-2543-x. Epub 2012 Jul 11.

Multimodal imaging utilising integrated MR-PET for human brain tumour assessment.

Author information

1
Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, 52428, Jülich, Germany. i.neuner@fz-juelich.de

Abstract

OBJECTIVES:

The development of integrated magnetic resonance (MR)-positron emission tomography (PET) hybrid imaging opens up new horizons for imaging in neuro-oncology. In cerebral gliomas the definition of tumour extent may be difficult to ascertain using standard MR imaging (MRI) only. The differentiation of post-therapeutic scar tissue, tumour rests and tumour recurrence is challenging. The relationship to structures such as the pyramidal tract to the tumour mass influences the therapeutic neurosurgical approach.

METHODS:

The diagnostic information may be enriched by sophisticated MR techniques such as diffusion tensor imaging (DTI), multiple-volume proton MR spectroscopic imaging (MRSI) and functional MRI (fMRI). Metabolic imaging with PET, especially using amino acid tracers such as (18)F-fluoroethyl-L-tyrosine (FET) or (11)C-L-methionine (MET) will indicate tumour extent and response to treatment.

RESULTS:

The new technologies comprising MR-PET hybrid systems have the advantage of providing comprehensive answers by a one-stop-job of 40-50 min. The combined approach provides data of different modalities using the same iso-centre, resulting in optimal spatial and temporal realignment. All images are acquired exactly under the same physiological conditions.

CONCLUSIONS:

We describe the imaging protocol in detail and provide patient examples for the different imaging modalities such as FET-PET, standard structural imaging (T1-weighted, T2-weighted, T1-weighted contrast agent enhanced), DTI, MRSI and fMRI.

KEY POINTS:

Hybrid MR-PET opens up new horizons in neuroimaging. Hybrid MR-PET allows brain tumour assessment in one stop. Hybrid MR-PET allows simultaneous acquisition of structural, functional and molecular images.

PMID:
22777617
DOI:
10.1007/s00330-012-2543-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center