Format

Send to

Choose Destination
J Mol Neurosci. 2013 Jan;49(1):223-30. doi: 10.1007/s12031-012-9848-8. Epub 2012 Jul 8.

Synaptic vesicle exocytosis in hippocampal synaptosomes correlates directly with total mitochondrial volume.

Author information

1
Department of Physiology and Neuroscience, NYU School of Medicine, New York, NY 10016, USA. mvi205@nyu.edu

Abstract

Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and, specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity.

PMID:
22772899
PMCID:
PMC3488359
DOI:
10.1007/s12031-012-9848-8
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center