Format

Send to

Choose Destination
See comment in PubMed Commons below
Molecules. 2012 Jul 4;17(7):8056-67. doi: 10.3390/molecules17078056.

Thermal hazard evaluation of lauroyl peroxide mixed with nitric acid.

Author information

1
Department of Safety Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. g9410816@yuntech.edu.tw

Abstract

Many thermal runaway incidents have been caused by organic peroxides due to the peroxy group, -O-O-, which is essentially unstable and active. Lauroyl peroxide (LPO) is also sensitive to thermal sources and is incompatible with many materials, such as acids, bases, metals, and ions. From the thermal decomposition reaction of various concentrations of nitric acid (HNO3) (from lower to higher concentrations) with LPO, experimental data were obtained as to its exothermic onset temperature (T0), heat of decomposition (ΔHd), isothermal time to maximum rate (TMRiso), and other safety parameters exclusively for loss prevention of runaway reactions and thermal explosions. As a novel finding, LPO mixed with HNO3 can produce the detonation product of 1-nitrododecane. We used differential scanning calorimetry (DSC), thermal activity monitor III (TAM III), and gas chromatography/mass spectrometer (GC/MS) analyses of the reactivity for LPO and itself mixed with HNO3 to corroborate the decomposition reactions and reaction mechanisms in these investigations.

PMID:
22763742
DOI:
10.3390/molecules17078056
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Multidisciplinary Digital Publishing Institute (MDPI)
    Loading ...
    Support Center