Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuropsychopharmacology. 2012 Oct;37(11):2416-27. doi: 10.1038/npp.2012.100. Epub 2012 Jul 4.

Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans.

Author information

1
Department of Psychiatry, University of Muenster, Muenster, Germany.

Abstract

Stress plays an important role in psychiatric disorders, and preclinical evidence indicates that the central endocannabinoid system modulates endocrine and neuronal responses to stress. This study aimed to investigate the effect of acute stress on circulating concentrations of endocannabinoids (eCBs) in healthy humans. A total of 71 adults participated in two sessions in which they were exposed to either a standardized psychosocial stress procedure (Trier Social Stress Test) or a control task. Blood samples for eCB and cortisol assays and cardiovascular and subjective measures were obtained before and at regular intervals after the tasks. Serum concentrations of the eCBs, N-arachidonylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), as well as of the N-acylethanolamides (NAEs), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA), and of the O-acylglycerol, 2-oleoylglycerol (2-OG), were determined. Compared with the control condition, stress increased serum concentrations of AEA and the other NAEs immediately after the stress period. Increases in PEA were positively correlated with increases in serum cortisol after stress. Furthermore, anxiety ratings at baseline were negatively correlated with baseline concentrations of AEA. The sex and menstrual cycle status of the subject affected the NAE responses to stress. Interestingly, subjects of Asian and African-American races exhibited different patterns of stress responses compared with the Caucasian subjects. These results indicate that stress increases circulating NAEs in healthy human volunteers. This finding supports a protective role for eCBs in anxiety. Further research is needed to elucidate the function of these lipid mediators, and to determine the mechanisms that regulate their appearance in the circulation.

PMID:
22763622
PMCID:
PMC3442338
DOI:
10.1038/npp.2012.100
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center